Publication: Grothendieck rings of ordered subgroups of the rationals
| dc.contributor.author | Bhardwaj, Neer | |
| dc.contributor.author | Moonen, Frodo | |
| dc.date.accessioned | 2025-11-14T13:43:30Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | Let $G$ be a proper subgroup of $\mathbb Q$ and $S_G$ be the set of primes $p$ for which $G$ is $p$-divisible. We show that the model-theoretic Grothendieck ring of the ordered abelian group $(G;+,<)$ is a quotient of $(\mathbb Z/q\mathbb Z)[T]/(T+T^2)$, where $q$ is the largest odd integer that divides $p-1$ for all $p \notin S_G$. This implies that the Grothendieck ring of $(G;+,<)$ is trivial in various salient cases, for example when $S_G$ is finite, or when $S_G$ does not contain the set of all primes of the form $2^n +1$, $n\in \mathbb N$. | |
| dc.identifier.citation | Neer Bhardwaj and Frodo Moonen. "Grothendieck rings of ordered subgroups of the rationals." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik: to appear (2026). DOI: 10.60866/CAM.254. | |
| dc.identifier.uri | https://diamond-oa.lib.cam.ac.uk/handle/1812/447 | |
| dc.identifier.uri | https://doi.org/10.60866/CAM.254 | |
| dc.rights | Attribution 4.0 International | en |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.title | Grothendieck rings of ordered subgroups of the rationals | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | f8227518-f280-4ff5-8551-b269a4d09d7b | |
| relation.isAuthorOfPublication | 7c98091c-82ba-4e0e-9efd-bef125878b91 | |
| relation.isAuthorOfPublication.latestForDiscovery | f8227518-f280-4ff5-8551-b269a4d09d7b | |
| relation.isJournalOfPublication | 72325bdb-b61c-4cc3-a98c-4e01c7b9a035 | |
| relation.isJournalVolumeOfPublication | 411f67b4-727b-42d6-af85-424be70ea060 | |
| relation.isJournalVolumeOfPublication.latestForDiscovery | 411f67b4-727b-42d6-af85-424be70ea060 |