Publication:
Grothendieck rings of ordered subgroups of the rationals

dc.contributor.authorBhardwaj, Neer
dc.contributor.authorMoonen, Frodo
dc.date.accessioned2025-11-14T13:43:30Z
dc.date.issued2026
dc.description.abstractLet $G$ be a proper subgroup of $\mathbb Q$ and $S_G$ be the set of primes $p$ for which $G$ is $p$-divisible. We show that the model-theoretic Grothendieck ring of the ordered abelian group $(G;+,<)$ is a quotient of $(\mathbb Z/q\mathbb Z)[T]/(T+T^2)$, where $q$ is the largest odd integer that divides $p-1$ for all $p \notin S_G$. This implies that the Grothendieck ring of $(G;+,<)$ is trivial in various salient cases, for example when $S_G$ is finite, or when $S_G$ does not contain the set of all primes of the form $2^n +1$, $n\in \mathbb N$.
dc.identifier.citationNeer Bhardwaj and Frodo Moonen. "Grothendieck rings of ordered subgroups of the rationals." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik: to appear (2026). DOI: 10.60866/CAM.254.
dc.identifier.urihttps://diamond-oa.lib.cam.ac.uk/handle/1812/447
dc.identifier.urihttps://doi.org/10.60866/CAM.254
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleGrothendieck rings of ordered subgroups of the rationals
dspace.entity.typePublication
relation.isAuthorOfPublicationf8227518-f280-4ff5-8551-b269a4d09d7b
relation.isAuthorOfPublication7c98091c-82ba-4e0e-9efd-bef125878b91
relation.isAuthorOfPublication.latestForDiscoveryf8227518-f280-4ff5-8551-b269a4d09d7b
relation.isJournalOfPublication72325bdb-b61c-4cc3-a98c-4e01c7b9a035
relation.isJournalVolumeOfPublication411f67b4-727b-42d6-af85-424be70ea060
relation.isJournalVolumeOfPublication.latestForDiscovery411f67b4-727b-42d6-af85-424be70ea060

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CAM.254-BhardwajMoonen-2026-EarlyView.pdf
Size:
594.89 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: